Dezimalsystem

aus WikiDoku
(Weitergeleitet von Dezimalschreibweise)

Das Dezimalsystem (von mittellateinisch decimalis zu {{#invoke:Vorlage:lang|full|CODE=la |SCRIPTING=Latn |SERVICE=lateinisch}}) ist ein Begriff aus der Mathematik für das Zahlensystem, welches sich heutzutage als internationaler Standard etabliert hat. Es ist als Stellenwertsystem mit der Basis zehn[1] bzw. mit zehn verschiedenen Ziffern[2] angelegt. Die Zahlzeichen werden aus den Dezimalziffern von 0 bis 9 und aus deren Aneinanderreihung gebildet. In dieser Form ist das Dezimalsystem für ganze und auch (mit einem Dezimalzeichen) für nicht-ganze Zahlen einsetzbar. Es wird auch als Zehnersystem oder Dekadisches System bezeichnet. In älteren Veröffentlichungen ist auch der Begriff Denärsystem zu finden.[3]

Kulturgeschichtlich haben sich diese Dezimalzahlen in der indischen Zahlschrift entwickelt und gelangten über den arabischen Raum in die europäischen Länder (siehe Geschichte des Stellenwertsystems). Im deutschsprachigen Raum beherrscht das Dezimalsystem das gesamte numerische Denken und Schreiben. Daneben führen noch – fachsprachlich in der elektronischen Datenverarbeitung – das Dualsystem (Binärsystem) oder das Sedezimalsystem (Hexadezimalsystem) ein Nischendasein.

In den Zahlschriften der traditionellen chinesischen und japanischen Dezimalsysteme, gibt es neben den Ziffern für die natürlichen Zahlen von 1 bis 9 zusätzlich Ziffern für Zehnerpotenzen. Letztere werden jeweils mit einer Zahlziffer paarweise kombiniert. Diese Schreibweise wird zunehmend durch die indische ersetzt.

Anthropologisch wird die Entstehung von Dezimalsystemen mit den fünf Fingern der zwei menschlichen Hände in Verbindung gebracht. Diese dienten als Zähl- und Rechenhilfe (Fingerrechnen). Gestützt wird diese Erklärung dadurch, dass in einigen Sprachen für die Zahlwörter 5 und 10 die in diesen Sprachen geltenden Begriffe für "Hand" und "zwei Hände" verwendet werden.[4] Ebenso wird auch die Entstehung der Zahlwörter vieler natürlicher Sprachen und älterer Zahlschriften gesehen, die ein Quinärsystem zur Basis fünf oder ein Vigesimalsystem zur Basis zwanzig hervorgebracht haben.

Vorschläge, das Duodezimalsystem (Zwölfersystem) wegen seiner Vorteile anstelle des Dezimalsystems einzuführen,[5][6] sind bisher erfolglos geblieben.

Dezimales Stellenwertsystem

Entwicklung der Ziffern

Ziffern

Im Dezimalsystem verwendet man die zehn arabischen Ziffern

0 (Null), 1 (Eins), 2 (Zwei), 3 (Drei), 4 (Vier), 5 (Fünf), 6 (Sechs), 7 (Sieben), 8 (Acht), 9 (Neun),

die als Dezimalziffern bezeichnet werden.

Die europäischen Zeichen für diese Ziffern stammen aus dem Maghreb und haben nicht die Form, die im Nahen Osten verwendet wird. Auch indische Schriften verwenden andere Zeichen.

Die Ziffern, die als Zahlzeichen zusammengefasst den Wert einer Zahl ausdrücken, werden unmittelbar aneinander gereiht; lediglich Trennzeichen können eingefügt sein

  • für eine Zifferngruppierung (z. B. Tausendertrennzeichen zur besseren Lesbarkeit) und
  • bei nicht-ganzen Zahlen für die Abgrenzung zwischen dem ganzzahligen und dem gebrochenen Teil des Zahlzeichens.

Die Reihenfolge der Ziffern hat eine eigenständige Bedeutung. Jede Ziffer belegt eine Stelle (Position im Zahlzeichen), wozu man Einerstelle, Zehnerstelle, Hunderterstelle usw. unterscheidet. Bei der schriftlichen Addition können dann Einer unter Einer, Zehner unter Zehner usw. geschrieben werden. Diese Anordnung ist erst durch die Erfindung der Ziffer Null in der indischen Zahlschrift möglich geworden. Bei der Übertragung des Zahlwortes „zweihundertfünf“ in das Zahlzeichen „205“ darf die im Wort nicht vorhandene Zehnerstelle nicht fehlen, sondern sie ist mit einer 0 zu füllen. Anderenfalls würde „25“ geschrieben; dann wäre die 2 nicht mehr auf ihrer Hunderterstelle.

Darstellung

Eine Dezimalzahl wird im deutschen Sprachraum meistens in der Form

geschrieben; daneben existieren je nach Verwendungszweck und Staat noch weitere Schreibweisen. Dabei ist jedes eine der oben genannten Ziffern. Jede Ziffer hat einen Ziffernwert; jede Stelle hat einen Stellenwert. Der Ziffernwert liegt in der konventionellen Zählreihenfolge. Der Stellenwert der -ten Stelle wird durch die Zehnerpotenz festgelegt, wenn die Zählvariable zu auf der Einerstelle festgelegt wird. Natürliche Zahlen enden rechts mit der Ziffer auf der Einerstelle. Ihr vorangestellt werden die Ziffern auf der Zehnerstelle, auf der Hunderterstelle usw., bis man auf der höchstwertigen Stelle, die mit einer Ziffer belegt ist, bei ankommt. Sollen nur signifikante Stellen angegeben werden, so ist .

Positive rationale Zahlen (zum Beispiel ) können in einen ganzzahligen Teil und einen echten Bruch zerlegt werden (im Beispiel ), und der Bruch lässt sich in Zehntel, Hundertstel usw. umrechnen (im Beispiel ). In der Schreibweise als Dezimalzahl folgen zur Anfügung des Bruchs rechts von der Einerstelle das Dezimalzeichen (im deutschsprachigen Raum ist das ein Komma) und auf Nachkommastellen die Ziffern bis (im Beispiel ). Dabei kann die Anzahl begrenzt sein (im Beispiel ) oder auch unbegrenzt.– Ist der Wert (Absolutwert) einer Zahl kleiner als 1, so wird links vom Komma stets eine 0 geschrieben.[7]

Der Wert der Dezimalzahl ergibt sich durch Summierung der mit ihrem zugehörigen Stellenwert multiplizierten Ziffernwerte. Zusätzlich ist das Vorzeichen voranzustellen; ein fehlendes Vorzeichen bedeutet ein Plus. (Nur die Null ist als einzige reelle Zahl weder positiv noch negativ.)

.

Beispiel:

oder

Längere Ziffernfolgen werden zur besseren Lesbarkeit in Dreiergruppen strukturiert (ab dem Komma nach links und nach rechts), siehe Schreibweise von Zahlen. Dazu dient nach Empfehlung der ISO ein (geschütztes) schmales Leerzeichen als Tausendertrennzeichen; Punkte zur Gruppierung sollen nicht mehr verwendet werden, da diese in Teilen der Welt als Dezimalzeichen verwendet werden und daher missverständlich sind.[7] Demnach wird die Dezimalzahl 76543210,9876 strukturiert in {{#invoke:Str|replace|{{#invoke:FormatNum|format|{{#invoke:Str|replace|76543210,9876|,|.||}}|2=de}}|-|−||}} oder für Teile der Schweiz in {{#invoke:Str|replace|{{#invoke:FormatNum|format|{{#invoke:Str|replace|76543210,9876|,|.||}}|2=ch}}|-|−||}}.

Dezimalbruchentwicklung

Endliche und unendliche Dezimalbrüche

Die Umrechnung eines gewöhnlichen Bruchs in eine Dezimalzahl und darüber hinaus die Darstellung einer reellen Zahl in der vorstehenden Weise wird als Dezimalbruchentwicklung bezeichnet.[8] Bei allen rationalen Zahlen ist die Folge der Ziffern periodisch ohne Ende. Im häufig auftretenden Sonderfall, wenn die Ziffernfolge ab einer gewissen Stelle durchweg aus Nullen besteht, sagt man, dass die Dezimalbruchentwicklung abbricht. Diese Nullen dürfen auf Nachkommastellen weggelassen werden, und der Dezimalbruch wird als endlicher Dezimalbruch bezeichnet.[9] Bei allen irrationalen Zahlen liegt eine unendliche nicht-periodische Dezimalbruchentwicklung vor.[10]

Bei einem unendlichen Dezimalbruch wird mit der Schreibweise    der Wert der Reihe bezeichnet. Beim periodischen Dezimalbruch kann die Periode durch Überstreichung gekennzeichnet werden; zugleich wird unter dem Strich der sich periodisch wiederholende Teil der Nachkommastellen zusammengefasst, siehe unter Notation.

Umkehrung der Dezimalbruchentwicklung

Zur Umformung periodischer Dezimalbrüche in gewöhnliche Brüche verwendet man die Beziehungen:

.

Diese Identitäten ergeben sich aus den Rechenregeln für geometrische Reihen, wonach

für gilt und folglich   .

Im ersten Fall wählt man . Damit ergibt sich .

Anwendungen:

Hier wird die Periode jeweils in den Zähler übernommen. Im Nenner stehen so viele Neunen, wie die Periode Stellen hat. Gegebenenfalls sollte der entstandene Bruch noch gekürzt werden.

Wenn die Periode nicht unmittelbar auf das Komma folgt, lässt sich das aber durch Erweiterung mit einer geeigneten Zehnerpotenz erreichen, beispielsweise:

Ein allgemeines Verfahren wird am Beispiel     vorgestellt:

1. Schritt: Man multipliziere den Dezimalbruch mit einer Zehnerpotenz so, dass genau eine Periode (im Beispiel die 36) vor dem Komma steht:
2. Schritt: Man multipliziere den Dezimalbruch mit einer Zehnerpotenz so, dass die Perioden genau hinter dem Komma beginnen:
3. Schritt: Man subtrahiere die beiden im 1. und 2. Schritt entstandenen Zeilen voneinander. Die Perioden hinter dem Komma kürzen sich dabei heraus:
vom 1. Schritt
vom 2. Schritt
Differenz
4. Schritt: Man löse nach auf und kürze möglichst:
Auf dasselbe Ergebnis kommt man mit .

{{#invoke:Vorlage:Anker|f |errCat=Wikipedia:Vorlagenfehler/Vorlage:Anker |errHide=1}}Zweierlei Darstellung

Für jeden Zahlenwert, die sich als endlicher Dezimalbruch schreiben lässt, gibt es noch eine zweite Darstellung als unendlicher Dezimalbruch mit der Periode 9. Zwischen beiden Zahlenwerten besteht nicht der geringste Unterschied.[11] Wie oben beschrieben und auch im Artikel 0,999… behandelt, kann man umformen und kommt zur Aussage

.

Mit dieser Identität kann umgekehrt ein periodischer Dezimalbruch mit der Periode 9 stets in einen periodisichen Dezimalbruch mit der Periode 0 umgeformt werden,[12] wobei diese Dezimalbruchentwicklung abgebrochen werden kann. Beispielsweise gilt

Periode

In der Mathematik bezeichnet man als Periode eines Dezimalbruchs die kürzest mögliche Ziffernfolge, die sich nach dem Komma immer wieder wiederholt. Alle rationalen Zahlen, und nur diese, haben eine periodische Dezimalbruchentwicklung.

Beispiele:

Rein periodische: (nach dem Komma beginnt sofort die Periode)
1/3 = 0,33333...
1/7 = 0,142857142857...
1/9 = 0,11111...
Gemischt periodische: (nach dem Komma kommt erst noch eine Vorperiode, bevor die Periode beginnt)
2/55 = 0,036363636... (Vorperiode 0; Periodenlänge 2)
1/30 = 0,03333... (Vorperiode 0; Periodenlänge 1)
1/6 = 0,16666... (Vorperiode 1; Periodenlänge 1)
134078/9900 = 13,543232... (die Vorperiode ist 54; Periodenlänge ist 2)

Auch endliche Dezimalbrüche zählen zu den periodischen Dezimalbrüchen; nach Einfügung unendlich vieler Nullen ist zum Beispiel

0,12 = 0,12000...

Echte (nicht-abbrechende) Perioden treten im Dezimalsystem genau dann auf, wenn sich der Nenner des zugrunde liegenden Bruches nicht ausschließlich durch die Primfaktoren 2 und 5 (die Primfaktoren der Zahl 10) erzeugen lässt.

Ist der Nenner eine von 2 und 5 verschiedene Primzahl, so ist die Periodenlänge eines Bruches ein Teiler von , da 10 dann eine prime Restklasse und damit ist. Die genaue Länge der Periode von (und von allen Brüchen mit ) ist die kleinste natürliche Zahl , bei der in der Primfaktorzerlegung von vorkommt.

Beispiel zur Periodenlänge 6: (106 − 1) = 999.999:

999.999 = 3 • 3 • 3 • 7 • 11 • 13 • 37,
1/7 = 0,142857142857…,
2/7 = 0,285714285714…,
1/13 = 0,076923076923…,
3/13 = 0,230769230769…,
6/13 = 0,461538461538…,
7/13 = 0,538461538461….
Die Beispiele wurden gewählt, um aufzuzeigen, dass bei gleichem Primzahlnenner die Perioden (Ziffernfolgen) für verschiedene Zähler als reine Links-Rechts-Verschiebungen von wenigen Ziffernfolgen vorkommen können – beim Nenner 7 ist es wegen eine einzige, beim Nenner 13 sind es wegen deren zwei.

Sowohl 1/7 als auch 1/13 haben eine Periodenlänge von 6, weil 7 und 13 in der Primfaktorzerlegung von erst ab vorkommen. 1/37 hat jedoch eine Periodenlänge von nur 3, weil bereits (103 − 1) = 999 = 3 • 3 • 3 • 37 ein Vielfaches von 37 ist.

Ist der Nenner keine Primzahl, so ergibt sich die Periodenlänge als die kleinste Zahl , für die der Nenner ein Teiler von ist; eventuelle Primfaktoren 2 und 5 des Nenners bleiben dabei unberücksichtigt.

Beispiele:

1/185 = 1/(5•37) hat die gleiche Periodenlänge wie 1/37, nämlich 3.
1/143 = 1/(11•13) hat die Periodenlänge 6, weil 999.999 = 3 • 3 • 3 • 7 • 143 • 37 (siehe oben)
1/260 = 1/(2•2•5•13) hat die gleiche Periodenlänge wie 1/13, also 6.

Um die Periodenlänge effizient zu bestimmen, kann die Bestimmung der Primfaktorzerlegungen der rasch wachsenden Zahlenfolge 9, 99, 999, 9999 usw. vermieden werden, indem die äquivalente Beziehung genutzt wird, also wiederholtes Multiplizieren (angefangen bei 1) mit 10 modulo des gegebenen Nenners , bis dies wieder 1 ergibt. Zum Beispiel für :

also hat 1/91 im Dezimalsystem die Periodenlänge 6.[13]

Notation

Für periodische Dezimalbruchentwicklungen ist eine Schreibweise üblich, bei der die Periode durch einen Überstrich markiert wird, und der sich periodisch wiederholende Teil der Nachkommastellen wird darunter zusammengefasst.

Beispiele sind

,
.

Aufgrund technischer Einschränkungen existieren auch andere Schreibweisen. So kann der Überstrich vorangestellt, eine typografische Hervorhebung (fett, kursiv, unterstrichen) des periodischen Teils gewählt oder dieser in Klammern gesetzt werden:

1/6 = 0,1¯6 = 0,16 = 0,16 = 0,16 = 0,1(6)
1/7 = 0,¯142857 = 0,142857 = 0,142857 = 0,142857 = 0,(142857)

Nicht-periodische Ziffernfolge

Eine irrationale Zahl enthält (auch) im Dezimalsystem eine unendliche, nicht-periodische Nachkommaziffernfolge. Angeben lässt sich davon stets nur ein endlicher Teil. Mit diesem kann man sich dem Wert der irrationalen Zahl zwar je nach Länge beliebig annähern, jedoch ist eine solche endliche Darstellung niemals exakt. Es ist also nur mithilfe zusätzlicher Symbole möglich, irrationale Zahlen exakt anzugeben.

Beispiele solcher Symbole sind Wurzelzeichen, wie , Buchstaben wie für die Kreiszahl oder für die Eulersche Zahl, sowie mathematische Ausdrücke wie unendliche Reihen oder Grenzwerte.

Umrechnung in andere Stellenwertsysteme

Methoden zur Umrechnung von und in das Dezimalsystem werden im Artikel zum Stellenwertsystem und in Artikeln zu anderen Stellenwertsystemen beschrieben: Dualsystem, Ternärsystem, Oktalsystem, Duodezimalsystem, Hexadezimalsystem.

Geschichte