Hydrophobie

aus WikiDoku
(Weitergeleitet von Hydrophob)
Die hydrophobe Oberfläche von Gras lässt das Wasser abperlen.

Der Begriff hydrophob stammt aus dem Altgriechischen ({{#invoke:Vorlage:lang|flat}} hýdor „Wasser“ sowie {{#invoke:Vorlage:lang|flat}} phóbos „Furcht“)[1] und bedeutet wörtlich „wassermeidend“. Nach IUPAC-Definition ist die Hydrophobie der Zusammenschluss unpolarer Gruppen oder Moleküle in einer wässrigen Umgebung aufgrund der Tendenz von Wasser, unpolare Gruppen oder Moleküle auszuschließen.[2] Allgemein werden dadurch Substanzen charakterisiert, die sich nicht mit Wasser mischen. Oberflächen aus hydrophobem Material lassen Wasser abperlen. Ist eine Oberfläche sehr stark wasserabweisend, wird auch von Superhydrophobie gesprochen.

Eigenschaften

Unpolare Stoffe wie Fette, Wachse, Alkane und Alkene sind hydrophob. Beim Lösen von hydrophoben Stoffen in Wasser tritt generell ein sogenannter hydrophober Effekt auf und bei manchen kleinen, hydrophoben Spezies wie Methan oder Xenon, bilden sich sogar entropisch ungünstige Klathrat-Strukturen. Generell ist deshalb die Löslichkeit dieser Stoffe in Wasser gering.

Das Maß für den Ausprägungsgrad der Hydrophobie von Stoffen (meist Proteinen) ist die Hydrophobizität. Das Gegenteil der Hydrophobie ist die Hydrophilie.

Hydrophobe Stoffe sind so gut wie immer lipophil, das heißt, sie lösen sich gut in Fett und Öl auf. Hydrophobie ist jedoch nicht immer mit Lipophilie gleichzusetzen, denn manche Stoffe sind gleichzeitig hydrophob und lipophob,[3] z. B. Fluorcarbone, Silikone und manche ionische Flüssigkeiten, wie z. B. BMIIm, welche in der Regel weder wasser- noch fettlöslich sind. Diese Stoffe werden amphiphob genannt.[4]

Moleküle, die sowohl lipophile (= hydrophobe) als auch hydrophile Strukturteile besitzen, werden als amphiphil bezeichnet. Diesen Effekt nutzen grenzflächenaktive Substanzen, wie beispielsweise Tenside (engl.: surfactants), oder Alkalisalze von Fettsäuren, um die Löslichkeit von unpolaren Verbindungen in der wässrigen Phase zu erhöhen und damit das Abwaschen von Schmutzpartikeln zu erleichtern.

Unterschiedliche Oberflächen und zugehörige Kontaktwinkel für Wasser.

Die Größe des Kontaktwinkels zwischen Flüssigkeit und Feststoff hängt von der Wechselwirkung zwischen den Stoffen an der Berührungsfläche ab: je geringer diese Wechselwirkung, desto größer der Kontaktwinkel.

Man bezeichnet die Oberfläche:

  • bei geringen Kontaktwinkeln (ca. 0°, Bild a) als hydrophil („wasserliebend“)
  • bei Winkeln um 90° (Bild b) als hydrophob („wasserabweisend“)
  • bei Winkeln über 90° (Bild c) als superhydrophob; letzteres wird bei sehr hohen Winkeln (ca. 160°) auch als Lotuseffekt bezeichnet und entspricht einer extrem geringen Benetzbarkeit.

Hydrophobe Oberflächen bestehen in der Regel aus hydrophoben Substanzen. Beispiele sind die Beschichtung von Oberflächen mit PTFE (Teflon) oder die Imprägnierung von Isolierstoffen und Textilien mit hydrophoben Stoffen wie Wachs oder Paraffin.

Ein Extrembeispiel für eine hydrophobe Oberfläche ist die Oberfläche von Blättern und Blüten des Lotos. Diese ist rau und zusätzlich mit hydrophoben Substanzen bedeckt. Durch diese Besonderheit weist sie Kontaktwinkel von über 160° auf, sodass Tropfen auf ihr fast rund sind. Von solchen Oberflächen perlt Wasser sehr gut ab. Aufliegende Schmutzpartikel werden sehr leicht weggespült. Dieser Effekt wird Lotuseffekt genannt.

Präzisierung des Begriffs

Entgegen der verbreiteten Vorstellung, existieren zwischen ungeladenen Molekülen keine abstoßenden Wechselwirkungen. Selbst zwischen der sehr hydrophoben Oberfläche von Teflon und Wasser existiert eine anziehende Wirkung.[5] Ohne eine solche könnten keine Wassertröpfchen an der Unterseite von hydrophoben Oberflächen haften, sondern würden herunterfallen.

Der Grund für hohe Kontaktwinkel gegenüber Wasser ist, dass Wassermoleküle untereinander stärkere Wechselwirkungen (Wasserstoffbrückenbindungen) eingehen, als mit der hydrophoben Oberfläche, mit welcher nur Van-der-Waals-Bindungen möglich sind. Deshalb ist bei hydrophoben Stoffen eine annähernd kugelförmige Gestalt von Wassertropfen energetisch am günstigsten.

Hydrophober Effekt